第九篇 有機農業研究

旗南分場蔡永皞、徐華盛、蔡幸君、戴順發、黃祥益、劉敏莉

壹、前言

有機農業研究為高雄區農業改良場旗南分場主要業務之一,目前有三位主要研究人員共同辦理該項業務。業務始於民國 77 年,當時環保意識逐漸抬頭,國內外許多有識之士憂心農業環境及生態問題,乃大力倡導有機農業。當時行政院農業委員會,為配合時代趨勢考慮到未來土地永續利用問題,特別委請中興大學土壤系、台南區農業改良場、及高雄區農業改良場,共同執行有機農業可行性之評估計畫,並於鹿草及旗山設置大區試驗田,以比較有機農法、折衷農法、及傳統農法在水旱田輪作制度下對作物生產及農業環境變遷之影響。該計畫於民國 80 年增加台中場及茶改場,於民國 82 年又增加台東場。此一研究計畫目的是評估台灣地區發展有機農業之可行性,並建立相關之應用技術。

為執行該計畫,高雄場旗南分場提供和興庄農地,供長期試驗用。該試驗地土壤屬於和興(Cw)土系,母質為石灰性砂頁岩及粘板岩混合沖積土,表底土均為壤土,pH值分別為6.5及7.5。試驗田設置有三種農耕法及二種輪作系統,合計六個處理,每個處理0.1公頃,總面積為0.6公頃,預計至少執行六年。至民國83年春季為止,共進行六年十八期作。試驗結果顯示推動有機農法應具有可行性,雖然有機區成本高於慣行區1.5~2.0倍,且病蟲害及雜草發生率偏高,但在適當的水旱輪作系統下,病蟲害及雜草均可獲得控制,且春作玉米及秋作毛豆有機區均可明顯增產,而水稻亦由減產逐漸轉為增產,僅需肥量較高的作物,例如甘藍及蘿蔔等,平均減產20~25%,但減產幅度已逐年減輕。由於有機區農產品品質及適口性均高於慣行區,且土壤理化性,包括pH值、有機質含量、土壤團粒安定性、及總體密度等均逐漸改善,已具有較高的生產潛力,加上土壤的抑病能力增強及大部份作物均可穩定生產,因此,評估在合理的提高售價後,有機農法應具有發展空間。

為了發展有機農業相關的應用技術,旗南分場除了保留上述試驗田之外,自民國 83 年起,進行堆肥研製與應用試驗,包括市售堆肥品質測定,育苗介質調製,田間堆肥種 類及用量試驗,堆肥液研製,及量產自製堆肥等等;民國 86 年起,另進行有機蔬菜輪作 組合試驗,目前已持續進行五年;民國 88 年起,增加設施有機蔬菜穩定生產及肥培技術 試驗,至目前為止已連續進行三年二十三期作,對於病蟲害防治及解決土壤鹽害問題, 均有深入的了解。另外,於民國 90 年起,試作香草作物數十種,面積約 0.2 公頃,91 年 4 月份召開觀摩會,參觀民眾反應熱烈。

貳、歷年有機農業研究成果

· 有機農業可行性之研究

本試驗自民國 77 年開始,至民國 89 年止,共進行十二年,農耕法分為有機、折衷、及慣行等三種,輪作制度分為 R1 改良型輪作制度及 R2 慣行輪作制度等二種,共六種處理,每處理面積 0.1 公頃,共 0.1x6=0.6 公頃,輪作系統採兩年一輪。第一循環(民國 77~83 年)試驗結果,有機農法比慣行農法可增產的作物有春作玉米及秋作毛豆,而減產的作物有春作毛豆、秋作玉米、及需肥量較高的作物,例如甘藍及蘿蔔等均減產10~20%,而水稻先減產再增產。第二循環(民國 83~89 年)時,R1 輪作制度修正為春作玉米(水稻)-夏作水稻(田菁)-秋作毛豆(萵苣),有機區各作物均明顯增產,尤其萵苣增幅達16~56%,顯示推動有機農法具有可行性,但需注意適時適地及適作問題。

·第一循環作物產量變化(1988~1994)

春作 R1 甜玉米,有機區比慣行區產量,六年來增產幅度依序為+9%、+4%、+5%、 +26%、+9%、+8%,平均增幅 10%,第一年即開始增產,六年來增幅並未擴大,說明甜 玉米適合春作有機栽培,但有機處理並未造成累積增產;春作 R2 毛豆,有機區比慣行 區,平均減產 7%,六年來增減幅依序為-11%、+2%、-7%、-3%、-17%、-6%,有機區幾 乎年年減產,顯示毛豆並不適合春作有機栽培。夏作 R1 田菁與水稻,兩者二年一輪,田 菁有機區比慣行區,六年來三次產量,依序增產 0%、+2%、+13%,呈逐年遞增趨勢,而 水稻依序為-18%、-20%、+1%,顯示前四年水稻有機區減產,第六年起開始增產;夏作 R2 亦是田菁與水稻,有機區比慣行區產量,田菁六年三次依序為 0%、-13%、+12%,第 五年後開始增產,而水稻依序為-18%、+5%、-2%,前二年減產,第四年起與慣行區相 當。秋作 R1 種植甘藍、毛豆及菜豆,有機區比慣行區產量,甘藍六年三次依序為-24%、 -11%、-29%, 平均減 21%, 毛豆及菜豆依序為+16%、+2%、+33%, 平均增產 17%, 顯示 秋作適合毛豆及菜豆有機栽培,但不適合於甘藍栽培; R2 種植甜玉米與蘿蔔,有機區甜 玉米依序減產-5%、-7%、-6%,平均減產 6%,而蘿蔔依序減產-12%、-15%、-43%,平均 减產 23%,蘿蔔減產幅度高於甜玉米,且蘿蔔減產有逐年擴增趨勢,顯示秋作不適合種 植蘿蔔及甜玉米。綜合以上,各輪作系統中,有機區可以立即增產的作物有春作甜玉米 (10%)及秋作毛豆(17%),六年後可增產的作物有夏作田菁及水稻,而仍無法增產的作物有 春作毛豆(7%)及秋作甘藍(21%)、甜玉米(6%)、蘿蔔(23%)。

·第二循環作物產量變化(1994~2000)

第二循環之輪作作物略有調整,有機區與慣行區產量比較,春作 R1 白玉米,六年來增減產幅度,依序為+7%、+3%、-7%、+22%、-3%、+23%,平均增產 8%,春作 R2 水稻,六年來依序為-13%、+1%、+4%、-19%、-32%、-23%,平均減產 14%,且有機區水稻減產,有逐年擴大趨勢,顯示春作亦不適合水稻有機栽培。夏作 R1 田菁與水稻,田菁六年三次產量,依序增產+17%、+25%、+24%,增幅比第一循環擴大,而水稻依序為+7%、+20%、-5%,顯示有機區水稻第 8~10 年間增產,第 12 年後又減產;R2 亦是田菁與水稻,田菁六年三次產量,依序增產+1%、+6%、+17%,增產幅度略低於 R1 輪作系統,而水稻依序為+5%、+41%、0%,亦顯示水稻有機區第 8~10 年間增產,第 12 年後又停止增產。秋作 R1 種植嫩莖萵苣及毛豆,萵苣依序增加+21%、+16%、+56%,平均增產 31%,毛豆依序為+7%、+16%,其中第三次受嚴重鳥害,產量不計,平均增產 12%,顯示秋作適合萵苣及毛豆有機栽培;R2 種植甜玉米與毛豆,甜玉米產量增減幅度,依序-10%、+4%、-2%,平均減產 3%,而毛豆依序增產+4%、+1%,平均增產 3%,顯示秋作適合毛豆有機栽培,而有機甜玉米仍無法增產。綜合以上,第二循環各作物有機區增產擴大的作物有夏作田菁(8~22%)及秋作萵苣(31%),仍然維持增產或增幅略減的作物有秋作毛豆(3~12%)及春作玉米(8%),十二年後仍無法增產的作物有春作水稻(14%)及秋作玉米(3%)。

·不同農耕法及輪作制度之研究

本計畫為前項計畫之延續,為配合生態有機農場計畫,慣行區全面禁止使用化學農藥及殺草劑,但仍保留化學肥料做為對照,89年夏作為第三循環開始,目前已進入第十四年。

經長期施用堆肥後,有機區土壤肥力比慣行區提高 2~3 倍,如表 1 所示,為防鹽分累積,自第三循環開始,輪作制度將改為高需肥型蔬菜例如甜玉米、甘藍、蘿蔔、青花菜、球莖甘藍等與水稻輪作。90 年春作玉米及水稻,堆肥區均比化肥區增產 11%。夏作水稻,受納利及利奇馬颱風侵襲,慣行區及折衷區全倒,堆肥區半倒,產量嚴重受損,但堆肥區仍增產 77~186%。秋作毛豆,堆肥區均比化肥區增產 86%,但青花菜減產 13%。

表 1.有機區連續施用堆肥 12 年對土壤化學性質之影響

	рН	EC	OM	CEC	N	P	K	Ca	Mg	Mn	Cu	Zn
處理	(1;1)	(sat.)	%	cmol	%	Mgkg ⁻¹	cmoll	Kg ⁻¹		mgkg	-1	
化學區	6.47	0.46	2.2	7.1	1.16	107	0.17	4.4	0.61	3.49	2.06	4.5
折衷區	7.48	0.66	2.6	8.0	1.54	143	0.31	8.0	0.98	1.27	2.19	8.0

有機區 7.52 0.86 3.8 10.9 1.91 198 0.34 11.6 1.14 2.49 4.06 12.2

表 290	在各期(乍產量	(t/ha)調查	
11 4.70			(UIIA)DE D.	

	R1 輪作系統						R2 輪作系統					
. Li, riπ	春作日	E米	夏作	水稻	秋作毛豆		春作	水稻	夏作	水稻	秋作青花	菜
處理	主穗	%	乾谷	%	經濟產量	%	乾谷	%	乾谷	%	生物產量	%
化學區	11.0	100	1.11	100	2.18	100	6.59	100	1.50	100	36.93	100
折衷區	11.8	107	2.25	203	3.74	172	6.39	97	1.96	131	33.46	91
堆肥區	12.2	111	3.18	286	4.06	186	7.30	111	2.66	177	32.09	87

· 生態農場作物有機栽培技術之研究

本計畫為 90 年競爭型新增計畫,統籌綜合各項有機農業研究,部分計畫亦已進行多年,主要試區位於高雄縣旗山鎮旗南分場試驗田,露地面積 3.2 公頃,設施面積 0.3 公頃,網室面積 0.1 公頃。試區土壤母質為石灰性砂頁岩及粘板岩混合沖積土,屬於和興(Cw)土系,表底土均為壤土,pH 值約為 6.5 及 7.5,排水不完全。計畫目的是希望建立大型的有機示範研究農場,探討有機農法的穩定生產技術,並兼顧環境品質及生態保育,做為產官學界推動有機農業之參考。農場內設施區,不施用任何非農藥資材,目前已可周年穩定生產有機葉菜類,而露地區水旱輪作田,利用性費洛蒙、黃色黏板、蘇力菌及苦楝油等,已可穩定生產水稻、玉米、毛豆、甘藍、大頭菜、及青花菜等作物。以上成果,永續經營目標,初步已達成。

·保育耕犁法之研究

本試驗分別於設施旱田及露地水旱輪作田進行。設施旱田於89年3月開始進行試驗,至90年4月截止,共種植9作,田間處理分為MT(不整地)及RT(中耕機整地)等二處理,結果如表3所示,蔬菜平均單株鮮重,MT比RT增產17%,僅最後一作蕹菜減產17%。經90年7月再次試驗後,不整地區蕹菜產量後來居上,顯著超出整地區,如表4所示。因此估計,設施旱田不整地時間可達半年以上,且其表土流失量比整地區約少1cm,符合永續經營目的。而露地水旱田的田間處理分為MT(不整地)、RT(曳引機整地)、及PT(板犁深耕40公分後再以曳引機整地)等三處理,實施效果,如表5所示,水稻收獲後實施MT處理,蔬菜平均產量比RT顯著減產26%,但若實施PT處理,則比傳統RT處理增產19%,此與設施旱田有明顯差異,可能受土壤利用型態差異之影響。

表 3.耕犁法對設施有機蔬菜單鮮重之影響

年月	∄)03	8905	8907	8908	8909	8910	9001	9003	9004	
	達甘藍	白菜	白菜	白菜	白莧菜	彩萵	白菜	亮萵	蕹菜	平均
處理	 ₽	g/p	%							
חת	54	108	45	80	15	229	80	367	55	
RT	00)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	(100)	100
) (T)4	114	58	89	27	236	96	380	46	
MT	24)	105	(129)	(111)	(175)	(103)	(119)	(103)	(83)	117

表 4.耕犁法對設施有機蕹菜產量之影響

		900730	900813	900827	900911	總產量	
品種	處理	kg/ha	kg/ha	kg/ha	kg/ha	kg/ha	%
4.0 ====11.4	RT	4441	2463	4774	4000	15678	100
桃園一號	MT	2715	4104	7593	4296	18708	119
<i>L.L.</i> - ***	RT	3370	3293	8456	3815	18934	100
竹葉	MT	1896	5133	10778	5741	23545	124

表 5.耕犁法對露地水旱田蔬菜產量之影響

		健株率	合格率	小粒率	裂果率	分叉率	腐爛率	單株鮮重	生物	產量	收獲指數
作物	處理	%	%	%	%	%	%	g	t/ha	%	%
	PT	73	61	26	2	11	0	236	13.26	137	69
胡蘿蔔	RT	58	52	26	3	19	0	216	9.69	100	71
	MT	61	33	20	7	39	1	222	9.63	99	65
r 4. **	PT	90	61	34	4	0	0	696	23.10	119	61
球莖	RT	87	57	34	9	0	0	612	19.43	100	61
甘藍	MT	89	21	77	2	0	0	368	12.27	63	58
	PT	96	78	22	0	0	0	1661	59.87	102	66
甘藍	RT	94	82	18	0	0	0	1660	58.45	100	68
	MT	91	55	45	0	0	0	1016	34.50	59	62

· 堆肥與有機資材應用試驗

本試驗於民國 85 年開始進行,先收集市售堆肥 29 種,測定其理化性質,並進行育苗試驗。其中有 3 種堆肥可以直接作為蔬菜之育苗介質,有 20 種堆肥需與純泥炭苔以1:1~16 比例混合後,才能做為育苗介質,有 7 種完全不能使用於育苗介質。而以木屑或椰屑與堆肥混合調製育苗介質,大部分的效果均佳,不遜於進口的泥炭苔介質。

生態農場內植物殘體,為避免造成環境污染,全部回收自製堆肥。堆肥化過程中,材料調整,以粒徑 2~0.6mm,碳氮比 30~40,堆積高度不超過 2 公尺條年為最佳,而醱酵條件,以水分含量 55~60%,通風每分鐘體積比 2~6%,翻堆加水 3~5 次為最佳。91 年自製農場堆肥 30 公噸。堆肥種類的田間試驗,90 年的結果,如表 6 所示,以功能性堆肥區最佳,禽畜糞堆肥其次,自製堆肥第三,油粕堆肥最差。其中功能性堆肥,春作水稻增產 36%,夏作黃秋葵增產 41%,秋作甘藍增產 10%,全年平均增產 29%。堆肥用量的田間試驗,結果如表 7 所示,堆肥用量以氦素推荐量的三倍施用,作物表現最佳,全年平均增產 2%。

表 6.90 年產量調查

	春作水稻產	量	夏作黃秋葵		秋作甘藍	
處理	t/ha	%	t/ha	%	t/ha	%
禽堆	7.97	123	3.49	74	90.7	129
自堆	7.76	120	2.53	54	61.6	88
功堆	8.85	136	6.59	141	77.3	110
油堆	7.45	115	2.59	55	49.7	71
M0	4.13	63	4.21	90	20.1	29
СК	6.46	100	4.69	100	70.4	100

表 7.90 年產量調查

	春作水稻產量		夏作黃秋葵		秋作球莖甘藍		
處理	t/ha	%	t/ha	%	t/ha	%	
M0	3.69	59	5.42	100	13.1	38	
M1	4.89	79	2.96	55	25.3	74	
M2	7.25	117	3.49	65	38.3	112	
M3	7.86	127	3.76	70	37.6	110	
M4	6.65	107	2.78	51	24.8	73	

CK 6.18 100 5.41 100 34.1 100

· 設施有機蔬菜穩定生產與肥培管理

台灣夏季天然災害極多,發展設施栽培勢在必行。本試驗採用設施,為成本較低的高架錏管隧道式溫網室。目前田間試驗已完成 20 期作,仍持續進行中。設施內施肥處理,分為無肥區、化肥區、及四個堆肥用量區,共六處理。化肥區全年三要素施用量,第一年 1060-500-690kg/ha,第二年 450-240-300kg/ha,第三年至目前為止施用 90-38-55kg/ha;堆肥用量,第一年及第二年 40、80、120、160t/ha,第三年至目前為止施用 15、30、45、60 t/ha。各期作相對產量如表 8 所示,化肥區自第 7 作起發生鹽害,雖減施化肥,至 14 期作仍然嚴重,產量甚至低於無肥區,目前視情況調整施肥或暫停施肥。堆肥區的殘效,自 16 期作起,開始明顯出現,作物生育良好,產量亦比對照區增加,但此同時最高量的堆肥區亦開始發生鹽害,第 18 期作起調節施肥。施肥對土壤 pH 及 EC 值之影響,如表 9 所示,各處理 pH 值均呈上升趨勢,以堆肥區上升最高,而 EC 值以則化肥區最高,無肥區最低,堆肥區介於中間。為避免土壤發生鹽害,設施區需進行合理化施肥,目前化肥區三要素用量約為露地田推荐量的 1/4,而堆肥用量每年每公頃以 40~80 噸為宜。除了施肥之外,欲穩定生產,尚需採用其他栽培措施,例如育苗定植、最少整地、採後清園、注意灌排水等,目前已可生產高品質的有機葉菜類蔬菜。

表 8.各處理作物的相對產量(%)

	期作7	期	作	期	作	期	作	期	作	期	作	期	作	期	作	期	作
處理	白菜	10		12		13		14		15		16		17		18	
	口米	白茅	葮	萵苣	<u> </u>	莧茅	葮	白茅	É	蕹芝	Ę	白茅	苌	白茅	Ę	萵苣	± =
CF	100	100		100		100		100		100		100		100		100	
M0	83	55		81		70		120		74		71		43		65	
M1	95	86		104		72		169		96		133		125		110	
M2	108	80		117		128		167		108		130		156		143	
M3	120	89		125		161		166		104		127		146		165	
M4	115	87		129		135		133		99		85		105		150	

表 9. 各期作定植前表土分析值

	pH(1:1)			EC (dS/m,Sat.)				
處理	7作	10作	15作	7作	10作	15作		
CF	5.07	5.39	6.58	3.79	2.81	2.60		
M0	6.88	7.16	7.64	0.91	0.89	1.55		
M1	6.87	7.25	7.82	1.05	1.05	1.50		
M2	6.74	7.19	7.86	1.52	1.36	1.81		
M3	6.79	7.25	7.92	1.42	1.30	1.59		
M4	6.56	7.11	7.81	2.18	1.53	1.61		

・網室有機蔬菜連作與輪作組合之研究

同一塊田繼續種植同一種作物,就是所謂的連作。連作極易引起連作障礙,包括引起特定病蟲害,根系分泌自毒或毒他物質,養分吸收不平衡等等。防止連作障礙,最好的方法是實施輪作。然而,並非任意的輪作一定對後作有益,必需要有互蒙其利的輪作,方值得應用。

本試驗自民國86年秋作開始進行,在同一塊田內種植16種作物,秋季採收之後,後作春作定植單一作物,由後作生育表現與產量結果,看出輪作組合之優劣性。表10顯示芹菜、茼蒿、及甘藍等均有明顯的連作減產,而青蔥較不明顯。芹菜若輪作毛豆、田菁、青蔥、萵苣,則芹菜產量比連作區分別增加51%、48%、46%、28%。而茼蒿若輪作毛豆、青蔥、芥菜、白菜、萵苣,則茼蒿產量比連作區分別增加22%、21%、21%、18%、17%。而青蔥若輪作其他作物,青蔥產量反而比連作區減產。而甘藍若輪作茼蒿、青蔥、莧菜、田菁、芹菜、油菜等,則比連作區增產7%以上,但若前作種植葉用甘藷、落葵、蕹菜,反而減產10~19%。

表 10.不同前作物對後作產量之影響

	後作生物產量							
	87 春作芦	芹菜	87 秋作青	蒽	88 春作詩		90 春作1	 İ藍
前作物	t/ha	%	t/ha	%	t/ha	%	t/ha	%
1.白菜	22.5	101	6.05	91	62.2	118	100.8	99
2.莧菜	23.3	105	5.53	83	57.4	109	111.8	110
3.蕹菜	26.8	121	6.42	97	58.4	111	86.6	85
4.油菜	23.9	108	6.05	91	56.5	107	108.7	107
5.菠菜	27.3	123	5.17	78	61.2	116	100.6	99
6.芹菜	22.2	100	5.77	87	54.1	103	109.5	107
7.芥菜	25.1	113	5.23	79	63.7	121	103.6	102
8.茼蒿	23.5	106	5.74	87	52.7	100	115.0	113
9.青蔥	32.6	147	6.63	100	63.8	121	112.4	110
10.毛豆	33.8	152	6.28	95	64.5	122	104.2	102
11.落葵	22.3	100	5.30	80	50.1	95	82.6	81
12.甘藍	21.7	98	4.90	74	57.4	109	102.0	100
13.萬苣	28.5	128	5.81	88	61.4	117	103.4	101
14.葉甘	22.9	103	5.34	81	57.3	109	91.4	90
15.蘿蔔	23.2	105	5.38	81	56.6	107	99.4	97
16.田菁	33.1	149	6.53	99	58.8	112	110.1	108
平均	25.8		5.76		58.5		102.8	
LSD5%	9.6		1.50		12.7		15.5	

·拮抗微生物試驗

本研究於民國 90 年開始進行,主要目的是利用有益拮抗微生物促進作物生長與提高作物產量,並有效降低病蟲害之發生。第一年田間試驗,供試作物胡瓜品種為河童盛夏(日本品種),拮抗細菌和菌根菌(*Glomus etunicatum*,濃度為 1.18x10⁵ spores/g dry soil)菌種分別由中興大學林益昇教授與嘉義分所莊明富先生提供。試驗方法如下:(1)拮抗細菌處理,將胡瓜種子粉衣拮抗細菌菌液(10⁸ cfu/ml)20 分鐘後,直播於泥炭土介質中;(2)菌根菌處理,取菌根菌菌種與泥炭土(1:3,w/w)混合後裝

入穴盤後,播種;(3)拮抗細菌與菌根菌混合處理,胡瓜種子粉衣拮抗細菌菌液(10⁸ cfu/ml)20 分鐘後,再直播於含菌根菌之泥炭土介質中;(4)另以完全不做處理之胡瓜種子和泥炭土為對照組,待瓜苗長出 2 片本葉後移入本田。胡瓜苗定植 20 天後,追施乙次拮抗細菌菌液(200ml/株),並調查記錄作物生育變化、產量及病蟲害發生情形。試驗結果,如表 11 及表 12 所示。菌根菌及混合處理者較好,分別比對照組增產 13.5% 和 14.6%,而拮抗菌處理者則減產 27.1%。另外,拮抗菌和菌根菌處理者,對露菌病及病毒病較具防治效果,發病率皆低於 5%以下,和對照組比較有顯著差異,而拮抗菌處理者會降低潛蠅之蟲口密度。

表 11. 拮抗微生物對胡瓜產量之影響1

	健株率	合格率			里株重	作物產量	1
處理	(%)	(%)	劣果	蟲害	(g)	(t/ha) %	
對照組	94.6	53.3	40.0	6.7	388.1	0.96	100.0
拮抗菌	95.1	55.2	37.9	6.9	275.0	0.70	72.9
菌根菌	89.3	54.4	39.1	6.5	430.6	1.09	113.5
混合	96.4	53.5	37.2	9.3	453.3	1.10	114.6

表 12. 拮抗微生物對胡瓜病蟲害之防治效果

	發病率(%)						蟲口數(隻/葉)					
處理	露菌病		根腐病		病毒病		潛蠅		瓜螟	蚜蟲	璊類	
對照組	26.3	a	0.0	a	7.5	a	29.4	a	0.6 a	3.7 a	0.6 a	
拮抗菌	3.1	b	0.3	a	1.3	b	12.1	b	0.6 a	4.7 a	0.4 a	
菌根菌	0.7	b	0.0	a	1.3	b	25.8	a	0.9 a	4.1 a	0.6 a	
混合	2.5	b	0.0	a	0.0	b	21.5	ab	0.8 a	2.7 a	0.3 a	

· 生態農場病蟲害調查及非農藥防治研究

於生態農場內,進行各項作物病蟲害相之生態調查,並記錄病蟲害發生之季節、頻 度以及與作物間之關係,搜尋害蟲之天敵及病原菌之拮抗微生物,加以篩選、繁殖與釋 放,並擬定非農藥防治策略。田間蟲卵以耕作整地、浸水及非農藥液劑等方式防治,成 蟲以燈光、有色黏板及性費洛蒙等方式誘殺。 周年病蟲害調查發現,在糧食作物方面:水稻主要病蟲害為稻熱病,台梗 5 號發生率為 11.3%,其它品種如高 142 號、越光米、香米和黑糯米則低於 1.7%以下;玉米(華珍品種)以玉米螟為主,發生率為 9.6~12.9%。果樹作物栽培區,病害以炭疽病為主,發生率為 15~25.6%,少數由藻斑病與葉斑病為害;蟲害以毒蛾為害蓮霧最為嚴重,發生率高達 88.1%,其次為潛葉蠅,發生率為 22.5%。特用作物栽培區,病害方面:芋頭以疫病為主,發生率為 21.7~40.0%;山藥及樹薯以炭疽病為主,發生率為 25~50%;蟲害方面:主要有蚜蟲、粉蝨、葉璊和斜紋夜蛾等害蟲為害。瓜果作物病害以病毒病較為嚴重,發生率為 4.0~17.7%;幼苗猝倒病、白絹病為零星發生;蟲害以番茄斑潛蠅最嚴重,發生率為 28.7~93.3%;其次為番茄夜蛾和少數的切根蟲、蚜蟲和粉蝨;生理性病變則有 裂果症和日燒症。短期葉菜類以蟲害發生較為嚴重,其中又以黃條葉蚤為主,嚴重時可造成蘿蔔全區廢園,其次為紋白蝶為害。

天敵調查發現有龜紋瓢蟲;並在田間釋放草蛉、黃斑粗蝝椿象、紅斑獵椿象、錙紋 瓢蟲、赤眼卵寄生蜂及東方果實蠅蛹寄生跳小蜂等天敵。

參、有機農業未來發展

有機農業目前已證實具有可行性,長期實施有機農法,不僅地力增加,作物的抗病及抗逆境能力亦增強,因此值得進一步推廣,惟實施過程中,施用堆肥往往造成養分累積,甚至出現土壤肥力飽滿鹽害效應,因此在應用技術上,未來應注重養分管理。非農藥病蟲害綜合防治,對有機農法是否成功,關係重要。選擇抗病、抗蟲、及品質均佳的優良品種,為首要之務,其次是注重輪作作物及耕作技術,第三是進行生物及物理防治,未來在病蟲害的防治研究上仍需加強。有機農產品是否能持續成長,除了決定於農產品品質及價格之外,穩定生產技術亦扮演重要角色,因為會影響市場的佔有性,因此提供穩定生產的技術,尤其是天然災害較多的夏季,特別值得重視。